Предел прочности на растяжение — Ultimate tensile strength

Две тиски прикладывают растяжение к образцу, потянув за него, растягивая образец до тех пор, пока он не сломается. Максимальное напряжение, которое он выдерживает перед разрушением, является его пределом прочности на разрыв.

Предел прочности при растяжении ( UTS ), часто сокращаемый до предела прочности на разрыв ( TS ), предела прочности или в уравнениях, представляет собой максимальное напряжение, которое материал может выдержать при растяжении или растяжении перед разрушением. В хрупких материалах предел прочности на разрыв близок к пределу текучести , тогда как в пластичных материалах предел прочности может быть выше.

Предел прочности при растяжении обычно определяется путем проведения испытания на растяжение и регистрации зависимости инженерного напряжения от деформации . Наивысшая точка кривой напряжение-деформация — это предел прочности при растяжении и имеет единицы измерения напряжения. Эквивалентная точка для случая сжатия вместо растяжения называется прочностью на сжатие .

Предел прочности на растяжение редко используется при проектировании пластичных элементов, но он важен для хрупких элементов. Они сведены в таблицу для обычных материалов, таких как сплавы , композитные материалы , керамика , пластмассы и дерево.

Определение

Предел прочности материала при растяжении — это интенсивное свойство ; поэтому его значение не зависит от размера испытуемого образца. Однако, в зависимости от материала, это может зависеть от других факторов, таких как подготовка образца, наличие или отсутствие поверхностных дефектов, а также температура окружающей среды и материала для испытаний.

Некоторые материалы ломаются очень резко без пластической деформации , что называется хрупким разрушением. Другие, которые являются более пластичным, включая большинство металлов, испытывают некоторую пластическую деформацию и , возможно , сужения до того перелома.

Прочность на растяжение определяется как напряжение, которое измеряется как сила на единицу площади. Для некоторых неоднородных материалов (или для собранных компонентов) это может быть выражено как сила или как сила на единицу ширины. В Международной системе единиц (СИ) единицей измерения является паскаль (Па) (или кратное ему число, часто мегапаскали (МПа), с использованием приставки СИ мега ); или, что эквивалентно паскалям, ньютонам на квадратный метр (Н / м 2 ). Обычная единица измерения в США — фунты на квадратный дюйм (фунт / дюйм 2 или фунт / кв. Дюйм). Килофунды на квадратный дюйм (ksi, или иногда kpsi) равны 1000 psi и обычно используются в Соединенных Штатах при измерении прочности на разрыв.

Пластичные материалы

Рисунок 1: «Инженерная» кривая напряжения-деформации (σ — ε), типичная для алюминия

1. Предел прочности

2. Предел текучести

3. Пропорциональное предельное напряжение

4. Разрушение

5. Деформация смещения (обычно 0,2%)

Многие материалы могут демонстрировать линейное упругое поведение , определяемое линейной зависимостью напряжения от деформации , как показано на рисунке 1 до точки 3. Упругое поведение материалов часто распространяется в нелинейную область, представленную на рисунке 1 точкой 2 ( «предел текучести»), до которого деформации полностью восстанавливаются при снятии нагрузки; то есть образец, нагруженный упруго при растяжении , удлиняется, но при разгрузке возвращается к своей первоначальной форме и размеру. За пределами этой упругой области для пластичных материалов, таких как сталь, деформации пластичны . Пластически деформированный образец не возвращается полностью к своим первоначальным размерам и форме при разгрузке. Для многих приложений пластическая деформация неприемлема и используется в качестве конструктивного ограничения.

После предела текучести пластичные металлы проходят период деформационного упрочнения, при котором напряжение снова увеличивается с увеличением деформации, и они начинают сужаться , поскольку площадь поперечного сечения образца уменьшается из-за пластического течения. В достаточно пластичном материале, когда образование шейки становится значительным, это вызывает изменение инженерной кривой напряжения-деформации (кривая A, рисунок 2); это связано с тем, что инженерное напряжение рассчитывается исходя из исходной площади поперечного сечения до образования шейки. Точка разворота — это максимальное напряжение на инженерной кривой напряжение-деформация, а координата инженерного напряжения этой точки — это предел прочности на растяжение, определяемый точкой 1.

Предел прочности на растяжение не используется при проектировании пластичных статических элементов, поскольку методы проектирования диктуют использование предела текучести . Однако он используется для контроля качества из-за простоты тестирования. Он также используется для приблизительного определения типов материалов для неизвестных образцов.

Предел прочности на разрыв — это общий инженерный параметр для конструктивных элементов, изготовленных из хрупкого материала, поскольку такие материалы не имеют предела текучести .

Тестирование

Образец круглого прутка после испытания на растяжение

«Чашечная» сторона характерной картины разрушения «чашка — конус».

Некоторые части имеют форму «чашки», а некоторые — форму «конуса».

Как правило, испытание включает взятие небольшого образца с фиксированной площадью поперечного сечения, а затем его вытягивание тензометром с постоянной скоростью (изменение измерительной длины, деленной на исходную измерительную длину) до тех пор, пока образец не разорвется.

При испытании некоторых металлов твердость при вдавливании линейно коррелирует с пределом прочности на разрыв. Это важное соотношение позволяет осуществлять экономически важный неразрушающий контроль поставок объемного металла с помощью легкого, даже портативного оборудования, такого как портативные твердомеры по Роквеллу . Эта практическая взаимосвязь помогает обеспечению качества в металлообрабатывающей промышленности выйти далеко за рамки лабораторных и универсальных испытательных машин .

Типичная прочность на разрыв

Типичная прочность на разрыв некоторых материалов

Материал Предел текучести

(МПа)

Предел прочности на разрыв

(МПа)

Плотность

(г / см 3 )

Сталь, конструкционная сталь ASTM A36 250 400-550 7,8
Сталь 1090 мягкая 247 841 7,58
Хромованадиевая сталь AISI 6150 620 940 7,8
Сталь, Мартенситностареющая сталь 2800 2617 2693 8.00
Сталь, AerMet 340 2160 2430 7,86
Сталь, каротажный кабель Sandvik Sanicro 36Mo для прецизионной проволоки 1758 2070 8.00
Сталь, AISI 4130, закалка в воде 855 ° C (1570 ° F), состояние 480 ° C (900 ° F) 951 1110 7,85
Сталь, API 5L X65 448 531 7,8
Сталь, высокопрочный сплав ASTM A514 690 760 7,8
Акрил , прозрачный литой лист (ПММА) 72 87 1,16
Полиэтилен высокой плотности (HDPE) 26-33 37 0,85
Полипропилен 12-43 19,7-80 0,91
Сталь нержавеющая AISI 302 — холоднокатаная 520 860 8,19
Чугун 4,5% C, ASTM A-48 130 200 7.3
Сплав » Ликвидметалл « 1723 г. 550-1600 6.1
Бериллий 99,9% Be 345 448 1,84
Алюминиевый сплав 2014-Т6 414 483 2,8
Полиэфирная смола (неармированная) 55 55
Полиэстер и матовый ламинат 30% E-стекло 100 100
Эпоксидный композит S-Glass 2358 2358
Алюминиевый сплав 6061-Т6 241 300 2,7
Медь 99,9% Cu 70 220 8,92
Мельхиор 10% Ni, 1,6% Fe, 1% Mn, остальное Cu 130 350 8,94
Латунь 200 + 500 8,73
Вольфрам 941 1510 19,25
Стекло 33 2,53
E-Glass N / A 1500 для ламината,

3450 для одних волокон

2,57
S-Стекло N / A 4710 2,48
Базальтовое волокно N / A 4840 2,7
Мрамор N / A 15 2,6
Конкретный N / A 2-5 2,7
Углеродное волокно N / A 1600 для ламината,

4137 только для волокон

1,75
Углеродное волокно (Toray T1100G) (самые прочные искусственные волокна) Только 7000 волокон 1,79
Человеческая прическа 140-160 200-250
Бамбук 350-500 0,4
Паучий шелк (см. Примечание ниже) 1000 1.3
Паучий шелк, паук из коры Дарвина 1652
Шелк шелкопряда 500 1.3
Арамид ( кевлар или тварон ) 3620 3757 1,44
СВМПЭ 24 52 0,97
Волокна из СВМПЭ (Dyneema или Spectra) 2300-3500 0,97
Вектран 2850-3340
Полибензоксазол (Зилон) 2700 5800 1,56
Дерево, сосна (параллельно волокну) 40
Кость (конечность) 104-121 130 1.6
Нейлон формованный, тип 6/6 450 750 1,15
Нейлоновое волокно, вытянутое 900 1.13
Эпоксидный клей 12-30
Резинка 16
Бор N / A 3100 2,46
Кремний , монокристаллический (m-Si) N / A 7000 2.33
Волоконно-оптические волокна из сверхчистого кварцевого стекла 4100
Сапфир (Al 2 O 3 ) 400 при 25 ° C, 275 при 500 ° C, 345 при 1000 ° C 1900 г. 3,9-4,1
Нанотрубка из нитрида бора N / A 33000 2,62
Алмазный 1600 2800 (~ 80-90 ГПа в микромасштабе) 3.5
Графен N / A внутренняя 130000; инженерное дело 50000-60000 1.0
Первые веревки из углеродных нанотрубок ? 3600 1.3
Углеродные нанотрубки (см. Примечание ниже) N / A 11000-63000 0,037-1,34
Композиты с углеродными нанотрубками N / A 1200 N / A
Высокопрочная пленка из углеродных нанотрубок N / A 9600 N / A
Железо (чистый монокристалл) 3 7,874
Зубы Limpet Patella vulgata (Goethite) 4900

3000-6500

^ a Многие значения зависят от производственного процесса, чистоты или состава. ^ b Многослойные углеродные нанотрубки обладают наивысшей прочностью на разрыв из всех когда-либо измеренных материалов: одно измерение составляет 63 ГПа, что все еще значительно ниже теоретического значения 300 ГПа. Первые жгуты из нанотрубок (длиной 20 мм), предел прочности которых был опубликован (в 2000 г.), имели прочность 3,6 ГПа. Плотность зависит от способа изготовления, и наименьшее значение составляет 0,037 или 0,55 (сплошной). ^ c Прочность паучьего шелка сильно различается. Это зависит от многих факторов, включая вид шелка (каждый паук может производить несколько для разных целей), вид, возраст шелка, температура, влажность, скорость, с которой прикладывается напряжение во время тестирования, прикладываемое напряжение длины и способ изготовления шелка. собранные (принудительное шелушение или натуральное прядение). Значение, указанное в таблице, 1000 МПа, примерно соответствует результатам нескольких исследований с участием нескольких различных видов пауков, однако конкретные результаты сильно различались. ^ d Сила человеческого волоса зависит от этнической принадлежности и химического воздействия. Типичные свойства отожженных элементов

Элемент Юнга

модуль

(ГП)

Смещение или

предел текучести

(МПа)

Предел

прочности

(МПа)

кремний 107 5000-9000
вольфрам 411 550 550-620
утюг 211 80-100 350
титан 120 100-225 246-370
медь 130 117 210
тантал 186 180 200
банка 47 9-14 15-200
цинковый сплав 85-105 200-400 200-400
никель 170 140-350 140-195
серебро 83 170
золото 79 100
алюминий 70 15-20 40-50
Свинец 16 12

Смотрите также

  • Предел прочности при изгибе
  • Сопротивление материалов
  • Растяжимая структура
  • Стойкость
  • Отказ
  • Напряжение (физика)
  • Модуль для младших

Рекомендации

дальнейшее чтение

  • Джанколи, Дуглас, Физика для ученых и инженеров, третье издание (2000). Река Верхнее Седл: Prentice Hall.
  • Келер Т., Фоллрат Ф (1995). « Биомеханика нитей у двух пауков , плетущих сферы Araneus diadematus (Araneae, Araneidae) и Uloboris walckenaerius (Araneae, Uloboridae)». Журнал экспериментальной зоологии . 271 : 1-17. DOI : 10.1002 / jez.1402710102 .
  • Т. Фоллетт, Жизнь без металлов
  • Мин-Фэн И, Лурье О., Дайер М.Дж., Молони К., Келли Т.Ф., Руофф Р.С. (2000). «Прочность и механизм разрушения многослойных углеродных нанотрубок при растягивающей нагрузке» (PDF) . Наука . 287 (5453): 637-640. Bibcode : 2000Sci … 287..637Y . DOI : 10.1126 / science.287.5453.637 . PMID 10649994 . Архивировано из оригинального (PDF) 4 марта 2011 года.
  • Джордж Э. Дитер, Механическая металлургия (1988). Макгроу-Хилл, Великобритания

Предел текучести стали — определение, ГОСТ, значения

Изделия из стали востребованы во всех отраслях народного хозяйства. Сталь используется при строительстве домов, мостов и других сооружений. При создании той или иной стальной конструкции учитываются прочностные характеристики. Одной из них является предел текучести стали. Его определение позволяет увеличить срок службы металлического изделия.

Блок: 1/5 | Кол-во символов: 345

Источник: https://promzn.ru/llurgiya/predel-tekuchesti-stali.html

Основное определение

В процессе использования на любое сооружение приходятся разные нагрузки в виде сжатий, растяжений или ударов. Они могут действовать как обособленно, так и совместно.

Современные конструкторы стремятся уменьшить массу стальных деталей для экономии материала, но при этом не допустить критичного снижения несущей способности всей конструкции. Происходит это засчет уменьшения сечения стальных арматур.

В зависимости от назначения объектов, могут меняться некоторые требования к стали, но имеется перечень стандартных и важных показателей. Их величины рассчитывают на этапе проектирования деталей и узлов будущего сооружения. Заготовка должна обладать высокой прочностью при соответствующей пластичности.

В первую очередь при расчетах прочности изделия из стали обращают внимание на предел текучести. Это значение характеризующее поведение деталей при воздействиях на них.

Предел текучести материала — это величина критического напряжения, при которой материал продолжает самостоятельную деформацию без увеличения нагрузки. Эта характеристика измеряется в Паскалях и позволяет рассчитывать максимально возможное напряжение для пластичной стали.

После прохождения этого предела в материале происходят невосстановимые процессы искажения кристаллической решетки. При последующем увеличении силы воздействия на заготовку и преодолении площадки текучести, деформация увеличивается.

Предел текучести иногда путают с пределом упругости. Это похожие понятия, но предел упругости — это величина максимального сопротивления металла и она чуть ниже предела текучести.

Величина текучести примерно на пять процентов превышает предел упругости.

Блок: 2/4 | Кол-во символов: 1663

Источник: https://tokar.guru/hochu-vse-znat/opredelenie-predela-tekuchesti-stali.html

Условный предел текучести

Условный предел текучести (он же технический предел текучести). Для материалов, не имеющих на диаграмме площадки текучести, принимают условный предел текучести — напряжение, при котором остаточная деформация образца достигает определённого значения, установленного техническими условиями (большего, чем это установлено для предела упругости). Под условным пределом текучести обычно подразумевают такое напряжение, при котором остаточная деформация составляет 0,2%. Таким образом обычно условный предел текучести при растяжении обозначается σ0,2.

Выделяют также условный предел текучести при изгибе и условный предел текучести при кручении.

Блок: 2/5 | Кол-во символов: 736

Источник: https://www.modificator.ru/terms/sigma_t.html

Какие факторы изменяют предел текучести

Сталь — это сплав железа с углеродом, количество которого определяет свойства металла. Углерод придает сплавам твердость и прочность. Текучесть металла увеличивается, если количество углеродной добавки составляет порядка 1,2%. Такое соотношение позволяет улучшить прочностные характеристики и повысить устойчивость к высоким температурам. Увеличение содержания углерода приводит к ухудшению технических параметров металла.

Влияние добавок марганца и кремния

Марганец не оказывает влияния на технические свойства сплава. Его добавляют в целях увеличения степени раскисления металла и уменьшения вредного воздействия серы. Обычно его содержание не превышает 0,8%.

Добавка кремния позволяет улучшить качество сварки. Его добавляют в процессе раскисления. А общее содержание данного элемента не превышает 0,38%.

Влияние углерода на механические свойства стали

Влияние добавок серы и фосфора

Количество серы, добавляемой в сплав, оказывает влияние на его механические показатели. Увеличенное содержание серы значительно снижает пластичность, вязкость и текучесть металла. Наибольшему истиранию подвержены изделия, содержащие более 0,6% серы.

Добавление фосфора позволяет улучшить показатели текучести. Однако данный элемент способствует снижению пластичности, вязкости и общих характеристик металла. Допустимым количеством фосфора считается не более 0,025-0,044%.

Как влияют сера и фосфор на свойства стали

Влияние добавок азота и кислорода

Азот и кислород относятся к неметаллическим примесям, поэтому их содержание должно быть минимальным. Если металл содержит более 0,03% кислорода, его эксплуатационные характеристики ухудшаются. Снижение пластичности и вязкости приводит к быстрому износу изделий.

Добавление азота способствует увеличению прочности стали. Но вместе с ней происходит уменьшение предела текучести материала. Если количество азота превышает допустимые значения, металлические конструкции быстро стареют за счет повышенной ломкости.

Микроструктура сплава, в составе которого присутствуют азот и кислород

Влияние легирующих добавок

К легирующим добавкам относятся химические элементы, добавляемые в сплав для придания определенных свойств. К числу легирующих элементов относятся:

Влияние легирующих элементов на свойства стали

  • хром;
  • титан;
  • вольфрам;
  • никель;
  • ванадий;
  • молибден.

Для получения оптимальных результатов их добавляют все вместе, соблюдая определенные пропорции.

Блок: 3/5 | Кол-во символов: 2401

Источник: https://promzn.ru/llurgiya/predel-tekuchesti-stali.html

Предел текучести металла

Характеристика, данная выше, справедлива в первую очередь для предела текучести металла. Предел текучести металла измеряется в кг/мм2 или Н/м2. На значение предела текучести металла влияют самые разные факторов, например: толщина образца, режим термообработки, наличие тех или иных примесей и легирующих элементов, микроструктура, тип и дефекты кристаллической решётки и др. Предел текучести металлов сильно меняется с изменением температуры.

Блок: 3/5 | Кол-во символов: 508

Источник: https://www.modificator.ru/terms/sigma_t.html

Как рассчитывается величина текучести стали

Первые расчеты величины текучести металла были выполнены в 30-х годах прошлого столетия советским ученым Яковом Френкелем. В их основу была положена прочность межатомных связей. Ученому удалось определить, какое напряжение требуется для начала пластической деформации простых тел.

Для расчета данной величины применяется следующая формула:

Предел текучести стали

ττ=G/2π, где величина G является модулем сдвига, определяющим устойчивость межатомных связей.

Как физик-теоретик, Френкель предположил, что материалы состоят из кристаллов, между которыми есть пространство. Там в определенном порядке расположены атомы. Чтобы достичь пластической деформации, необходимо разорвать межатомные связи в плоскости, разделяющей половинки тела.

Ряды атомов сместятся и половинки тела разорвутся, если на них оказать напряжение, величина которого соответствует определенному значению. Если воздействие будет оказываться и дальше, атомы одной половинки потеряют связь с атомами другой половинки.

Отчасти Френкель оказался прав. Только разрушение произойдет не между половинками тела, то есть посередине, а в том месте, где структура материала неоднородна.

Для каждого вида металла существует несколько значений предела текучести.

Физический предел текучести. Данной величиной обозначают силу напряжения, при которой тело деформируется без изменения прилагаемой нагрузки.

График физического предела текучести стали

Условный предел текучести. Данный термин применяют к силе напряжения, при которой значение пластической деформации материала составляет около 0,2%.

Блок: 4/5 | Кол-во символов: 1583

Источник: https://promzn.ru/llurgiya/predel-tekuchesti-stali.html

Предел текучести стали

Предел текучести сталей в ГОСТах указывается с пометкой «не менее», единица измерения МПа. Приведём в качестве примера регламентируемые значения предела текучести σТ некоторых распространённых сталей.

Для сортового проката базового исполнения (ГОСТ 1050-88, сталь конструкционная углеродистая качественная) диаметром или толщиной до 80 мм справедливы следующие значения предела текучести сталей:

  • Предел текучести стали 20 (Ст20, 20) при T=20°С, прокат, после нормализации — не менее 245 Н/мм2 или 25 кгс/мм2.
  • Предел текучести стали 30 (Ст30, 30) при T=20°С, прокат, после нормализации — не менее 295 Н/мм2 или 30 кгс/мм2.
  • Предел текучести стали 45 (Ст45, 45) при T=20°С, прокат, после нормализации — не менее 355 Н/мм2 или 36 кгс/мм2.

Для этих же сталей, изготавливаемых по согласованию потребителя с изготовителем, ГОСТ 1050-88 предусматривает иные характеристики. В частности, нормированный предел текучести сталей, определяемый на образцах, вырезанных из термически обработанных стальных заготовок указанного в заказе размера, будет иметь следующие значения:

  • Предел текучести стали 30 (Ст30, закалка+отпуск): прокат размером до 16 мм — не менее 400 Н/мм2 или 41 кгс/мм2; прокат размером от 16 до 40 мм — не менее 355 Н/мм2 или 36 кгс/мм2; прокат размером от 40 до 100 мм — не менее295 Н/мм2 или 30 кгс/мм2.
  • Предел текучести стали 45 (Ст45, закалка+отпуск): прокат размером до 16 мм — не менее 490 Н/мм2 или 50 кгс/мм2; прокат размером от 16 до 40 мм — не менее 430 Н/мм2 или 44 кгс/мм2; прокат размером от 40 до 100 мм — не менее 375 Н/мм2 или 38 кгс/мм2.

*Механические свойства стали 30 распространяются на прокат размером до 63 мм.

Предел текучести стали 40Х (Ст 40Х, сталь конструкционная легированная, хромистая, ГОСТ 4543-71): для проката размером 25 мм после термообработки (закалка+отпуск) — предел текучести стали 40Х не менее 785 Н/мм2 или 80 кгс/мм2.

Предел текучести стали 09Г2С (ГОСТ 5520-79, лист, сталь 09Г2С конструкционная низколегированная для сварных конструкций, кремнемарганцовистая). Минимальное значение предела текучести стали 09Г2С для стального проката в зависимости от толщины листа меняется от 265 Н/мм2 (27 кгс/мм2) до 345 Н/мм2 (35 кгс/мм2). Для повышенных температур минимальное требуемое значение предела текучести стали 09Г2С составляет: для Т=250°C — 225 (23); для Т=300°C — 196 (20); Т=350°C — 176 (18); Т=400°C — 157 (16).

Предел текучести стали 3. Сталь 3 (углеродистая сталь обыкновенного качества, ГОСТ 380-2005) изготавливается следующих марок: Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп. Предел текучести стали 3 регламентируется отдельно для каждой марки. Так, например, требования к пределу текучести Ст3кп, в зависимости от толщины проката, меняются от 195-235 Н/мм2 (не менее).

Блок: 4/5 | Кол-во символов: 3000

Источник: https://www.modificator.ru/terms/sigma_t.html

Проверка сплава

Перед запуском в производство для изучения свойств металлического сплава, проводят испытания. На образцы металла воздействуют различными нагрузками до полной потери всех свойств.

Нагрузки бывают:

  • Статистическая нагрузка.
  • Проверка на выносливость и усталость стали.
  • Растягивание элемента.
  • Тестирование на изгиб и кручение.
  • Совместная выносливость на изгиб и растяжение.

Для этих целей применяют специальные станки и создают условия, максимально приближенные к режиму эксплуатации будущей конструкции.

Проведение испытаний

Для проведения испытаний на цилиндрический образец сечением в двадцать миллиметров и расчетной длиной в десять миллиметров применяют нагрузку на растяжение. Сам образец имеет длину более десяти миллиметров, чтобы была возможность надежно его захватить, а на нем отмечена длина в десять миллиметров и именно она называется расчетной. Силу растяжения увеличивают и замеряют растущее удлинение образца. Для наглядности данные наносят на график. Он носит название диаграммы условного растяжения.

При небольшой нагрузке образец удлиняется пропорционально. Когда сила растяжения достаточно увеличится, то будет достигнут предел пропорциональности. После прохождения этого предела начинается непропорциональное удлинение материала при равномерном изменении силы растяжения. Затем достигается предел, после прохождения которого образец не может возвратиться к первоначальной длине. При прохождении этого значения, изменение испытываемой детали происходит без увеличения силы растяжения. Например, для стального прута Ст. 3 эта величина равна 2450 кг на один квадратный сантиметр.

Если при постоянной силе воздействия, материал способен длительное время самостоятельно деформироваться, то его называют идеально пластическим.

При испытаниях часто бывает, что площадка текучести нечетка определена, тогда вводят определение условного предела текучести. Это означает, что сила, действующая на металл, вызвала деформацию или остаточное изменение около 0.2%. Значение остаточного изменения зависит от пластичности металла.

Чем металл пластичнее, тем выше значение остаточной деформации. Типичными сплавами, в которых нечетко выражена такая деформация, являются медь, латунь, алюминий, стали с малым содержанием углерода. Образцы этих сплавов называют уплотняющимися.

Когда металл начинает «течь» то, как демонстрируют опыты и исследования, в нём происходят сильные изменения в кристаллической решетке. На её поверхности появляются линии сдвига и слои кристаллов значительно сдвигаются.

После того как металл самопроизвольно растянулся, он переходит в следующее состояние и опять приобретает способность сопротивления. Затем сплав достигает своего предела прочности и на детали четко проявляется наиболее слабый участок, на котором происходит резкое сужение образца.

Площадь поперечного сечения становится меньше и в этом месте происходит разрыв и разрушение. Величина силы растяжения в этот момент падает вместе со значением напряжения и деталь рвётся.

Высокопрочные сплавы выдерживают нагрузку до 17500 килограмм на сантиметр квадратный. Предел прочности стали СТ.3 находится в пределах 4−5 тыс. килограммов на сантиметр квадратный.

Характеристика пластичности

Пластичность материала является важным параметром, который должен учитываться при проектировании конструкций. Пластичность определяется двумя показателями:

  • остаточным удлинением;
  • сужением при разрыве.

Остаточное удлинение вычисляют путем замера общей длины детали после того, как она разорвалась. Она состоит из суммы длин каждой половины образца. Затем в процентах определяют отношение к первоначальной условной длине. Чем прочнее металлический сплав, тем меньше значение относительного удлинения.

Остаточное сужение — это отношение в процентах самого узкого места разрыва к изначальной площади сечения исследуемого прута.

Показатель хрупкости

Самым хрупким металлическим сплавом считается инструментальная сталь и чугун. Хрупкость — это свойство обратное пластичности, и оно несколько условно, поскольку сильно зависит от внешних условий.

Такими условиями могут являться:

  • Температура окружающей среды. Чем ниже температура, тем хрупче становится изделие.
  • Скорость изменения прилагаемого усилия.
  • Влажность окружающей среды и другие параметры.

При изменении внешних условий, один и тот же материал ведет себя по-разному. Если чугунную болванку зажать со всех сторон, то она не разбивается даже при значительных нагрузках. А, например, когда на стальном пруте есть проточки, то деталь становиться очень хрупкой.

Поэтому на практике применяют не понятие предела хрупкости, а определяют состояние образца как хрупкое или довольно пластичное.

Прочность материала

Это механическое свойство заготовки и характеризуется способностью выдерживать нагрузки полностью не разрушаясь. Для испытываемого образца создают условия наиболее отражающие будущие условия эксплуатации и применяют разнообразные воздействия, постепенно увеличивая нагрузки. Повышение сил воздействия вызывают в образце пластические деформации. У пластичных материалов деформация происходит на одном, ярко выраженном участке, который называется шейка. Хрупкие материалы могут разрушаться на нескольких участках одновременно.

Сталь проходит испытание для точного выяснения различных свойств, чтобы получить ответ о возможности её использования в тех или иных условиях при строительстве и создании сложных конструкций.

Значения текучести различных марок сталей занесены в специальные Стандарты и Технические Условия. Предусмотрено четыре основных класса. Значение текучести изделий первого класса может доходить до 500 кг/см кв., второй класс отвечает требованиям к нагрузке до 3 тыс. кг/см кв., третий — до 4 тыс. кг/см кв. и четвертый класс выдерживает до 6 тыс. кг/см кв.

Блок: 4/4 | Кол-во символов: 5791

Источник: https://tokar.guru/hochu-vse-znat/opredelenie-predela-tekuchesti-stali.html

Текучесть расплава

Текучесть расплава металла — это способность расплавленного металла заполнять литейную форму. Текучесть расплава для металлов и металлических сплавов — то же что и жидкотекучесть. (См. Литейные свойства сплавов).

Текучесть жидкости вообще и расплава в частности есть величина, обратная динамической вязкости. В Международной системе единиц (СИ) текучесть жидкости выражается в Па-1*с-1.

Подготовлено: Корниенко А.Э. (ИЦМ)

Лит.:

  1. Штремель М.А. Прочность сплавов. Часть II. Деформация: Учебник для вузов. — М.:*МИСИС*, 1997. — 527 с.
  2. Жуковец И.И. Механические испытания металлов: Учеб. для сред. ПТУ. — 2-е изд., перераб. и доп. — М.: Высш.шк., 1986. — 199 с.: ил. — (Профтехобразование). — ББК 34.2/ Ж 86/ УДЖ 620.1
  3. Иванов В.Н. Словарь-справочник по литейному производству. — М.: Машиностроение, 1990. — 384 с.: ил. ISBN 5-217-00241-1
  4. Бобылев А.В. Механические и технологические свойства металлов. Справочник. — М.: Металлургия, 1980. 296 с.
  5. Белянкин Ф.П. Энергетический предел текучести металлов. // Сборник Института строительной механики АН УССР. №9, 1948.152

Блок: 5/5 | Кол-во символов: 1229

Источник: https://www.modificator.ru/terms/sigma_t.html

Кол-во блоков: 12 | Общее кол-во символов: 17256

Количество использованных доноров: 3

Информация по каждому донору:

  1. https://tokar.guru/hochu-vse-znat/opredelenie-predela-tekuchesti-stali.html: использовано 2 блоков из 4, кол-во символов 7454 (43%)
  2. https://promzn.ru/llurgiya/predel-tekuchesti-stali.html: использовано 3 блоков из 5, кол-во символов 4329 (25%)
  3. https://www.modificator.ru/terms/sigma_t.html: использовано 4 блоков из 5, кол-во символов 5473 (32%)

Поделитесь в соц.сетях:

Оцените статью:

Загрузка…

Литература:

  1. А.В. Ланцова, Е.В. Санарова, Н.А. Оборотова и др. Разработка технологии получения инъекционной лекарственной формы на основе отечественной субстанции производной индолокарбазола ЛХС-1208 // Российский биотерапевтический журнал. 2014. Т. 13. № 3. С. 25-32.
  2. ОФС.1.2.1.2.0003.15 Тонкослойная хроматография // Государственная фармакопея, XIII изд.
  3. Мирский, «Хирургия от древности до современности. Очерки истории.» (Москва, Наука, 2000, 798 с.).
  4. https://ru.xcv.wiki/wiki/Ultimate_tensile_strength.
  5. https://intehstroy-spb.ru/spravochnik/opredelenie-predela-tekuchesti-stali.html.
  6. З.С. Смирнова, Л.М. Борисова, М.П. Киселева и др. Доклиническое изучение противоопухолевой активности производного индолокарбазола ЛХС-1208 // Российский биотерапевтический журнал. 2014. № 1. С. 129.
  7. Daremberg, «Histoire des sciences médicales» (П., 1966).
  8. Guardia, «La Médecine à travers les âges».

Ссылка на основную публикацию
Похожие публикации